Plant Health and Rapid Response to Protect Food Security and Livelihoods


Effective plant health management is critical for improving the productivity, profitability, sustainability and resilience of agrifood systems. Yet, farming communities, especially in low- and middle-income countries, continue to struggle against plant pests and diseases. Each year, these threats cause 10–40% losses to major food crops, costing the global economy US$220 billion. Recent analyses show that the highest losses due to pests and diseases are associated with food-deficit regions with fast-growing populations.

Increasing trade and travel, coupled with weak phytosanitary systems, are accelerating the global spread of devastating pests and diseases. The situation is exacerbated by climate change, driving the emergence of new threats. These burdens fall disproportionately on women and poorly resourced communities.

Diagnostic capacity, global-scale surveillance data, risk forecasting and rapid response and management systems for major pests and diseases are still lacking. Inadequate knowledge and access to climate-smart control options often leave smallholders and marginalized communities poorly equipped to respond to biotic threats. Environmental effects of toxic pesticides, mycotoxin exposure and acute unintentional pesticide poisoning are major concerns globally.


This Initiative aims to protect agriculture-based economies of low- and middle-income countries in Africa, Asia and Latin America from devastating pest incursions and disease outbreaks, by leveraging and building viable networks across an array of national, regional and global institutions.


This objective will be achieved by:

  • Bridging knowledge gaps and networks for plant health threat identification and characterization, focusing on strengthening the diagnostic and surveillance capacity of national plant protection organizations and national agricultural research and extension systems, and facilitating knowledge exchange on pests and diseases.
  • Risk assessment, data management and guiding preparedness for rapid response, focusing on controlling the introduction and spread of pests and diseases by developing and enhancing tools and standards.
  • Integrated pest and disease management, focusing on designing and deploying approaches against prioritized plant health threats in targeted crops and cropping systems.
  • Tools and processes for protecting food chains from mycotoxin contamination: designing and deploying two innovations for reducing mycotoxin contamination to protect health, increase food/feed safety, enhance trade, diversify end-use and boost income.
  • Equitable and inclusive scaling of plant health innovations to achieve impacts, through multistakeholder partnerships, inter-disciplinary research and effective communications.


Proposed 3-year outcomes include:

  1. National plant protection organizations in at least 10 target countries participate in a global plant diagnostic and surveillance network, exchanging data and knowledge.
  2. At least 25 national partners in 10 target countries use the novel diagnostic and surveillance tools to effectively counter existing or emerging plant health threats.
  3. At least 10 target national plant protection organizations increase their capacity to use epidemiological modeling data and decision support tools for pest risk assessment and preparedness to counter prioritized pests and diseases.
  4. A global plant health consortium comprising 60–70 institutions is operational, codeveloping and deploying integrated pest and disease management innovation packages and educational curriculum for effective plant health management.
  5. Adoption of eco-friendly and climate-smart integrated pest and disease management innovations by at least 4 million smallholders in 15 countries results in reduction in crop losses of at least 5% and use of toxic pesticides of at least 10%.
  6. At least 10 private sector partners in four focal countries in Africa commercialize Aflasafe to 200,000 farmers (400,000 ha of maize), resulting in enhanced availability of safe and nutritious food and feed.
  7. At least 300,000 smallholder households across five countries use affordable and easy-to-use pre- and post-harvest integrated mycotoxin management innovations for mitigating contamination of the food chain.
  8. Plant health research communities in at least 12 targeted countries use needs assessment evidence and data to develop demand-driven, equitable and scalable innovations.
  9. National and regional partners use validated scaling approaches for detection, surveillance and management of pests, diseases and mycotoxin.
  10. Based on science-based plant health policy briefs, investors and decision makers in targeted regions create an enabling environment for research for development and scaling of plant health innovations.


Projected impacts and benefits include:


Livelihoods of more than 27 million people (more than 6 million households) across 13 target countries are improved due to increased yield stability and containment of pest- and disease-induced crop and food losses at the field- and landscape-levels through development and delivery of eco-friendly innovations to detect and control pests and diseases.


More than 110 million people (more than 16 million households) benefit from better resilience of crops and cropping systems, better preparedness to counter biotic threats exacerbated by climate variability and changing farming practices, further increasing food security and farm profitability, and reducing food prices.

Losses in yield and quality of major food crops due to pests and diseases are reduced through integrated pest and disease management innovations. Food and feed are made safer for consumption by reducing pesticide and mycotoxin contamination in targeted crops, improving human and animal health.


Around 8 million women have increased access to and benefit from plant health innovations through prioritization and implementation of approaches for gender-equitable and socially inclusive design and scaling of plant health innovations. These are supported by multi-stakeholder partnerships and new opportunities for women and youth.


More than 8 million people (more than 1.27 million households) benefit from reduced impact of climate-induced changes in pests and diseases on crops, food security, and livelihoods through better preparedness and adaptation of plant health innovations based on improved forecasting of threats and modeling of impacts.


Reduction in use of toxic pesticides and associated safety hazards, including pesticide residues in the environment, due to integrated disease and pest management and prioritization of nature-based solutions are applied on more than 9 million hectares of maize crops, benefiting more than 24 million people (more than 5 million households). Natural biodiversity and ecologies are protected from devastating invasive pests and pathogens and toxic pesticides.


For more details, view the Initiative proposal


Header photo: Sprayers using pesticides against fall armyworm, Nigeria. Photo by C. de Bode/CGIAR.