Remote sensing and machine learning integration to detect and forecast floods in Lodwar Town, Turkwel Basin, Kenya

Share this to :

Reliable flood monitoring and prediction remain a challenge in data-scarce regions, particularly in arid and semi-arid environments. This study explores the integration of remote sensing data and machine learning techniques to improve flood detection and early warning capabilities in Lodwar Town of the Turkwel Basin, Kenya. This depended on finding a relationship between daily rainfall and Normalized Difference Water Index (NDWI). Among multiple rainfall products evaluated, Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) was selected due to its fine spatial resolution and performance. Daily NDWI time series derived from Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) imagery were used as a proxy for water accumulation and flood indicators. A python-based Decision Tree Regressor (DTR) model was trained using the daily CHIRPS rainfall data with various lag times, along with auxiliary meteorological variables including relative humidity, wind speed, and mean temperature for the period from 2002 to 2024 to predict NDWI of Lodwar Town. The machine learning model substantially improved the correlation between rainfall and NDWI, raising the correlation coefficient by 25%. Spatial analysis of rainfall-NDWI correlation revealed that areas in the west, northwest, and southwest of Lodwar Town, with elevations between 508 m and 648 m have high correlation. Rainfall in these regions can serve as signal for potential rapid flooding with 0-day lag-time in Lodwar Town situated at an elevation of approximately 500 m. These areas are not necessarily the primary high rainfall sources, rather they act as signal zones for floods of Lodwar Town that can provide flood early warning information. The proposed methodology in this study can offer a practical approach to anticipatory action and flood risk reduction for vulnerable communities in remote regions with no or limited hydrometeorological stations.

Citation

Lakew, H. B.; Taye, M. T.; Lino, O.; Dyer, E. 2025. Remote sensing and machine learning integration to detect and forecast floods in Lodwar Town, Turkwel Basin, Kenya. Frontiers in Water, 7:1683545. doi: https://doi.org/10.3389/frwa.2025.1683545

Share this to :